Основания в химии — классификация, получение, свойства, формулы и определения с примерами

  • Применение оснований
  • Способы получения оснований и амфотерных гидроксидов
      Получение нерастворимых оснований
  • Получение амфотерных гидроксидов
  • Химические свойства оснований
      Действие оснований на индикаторы
  • Взаимодействие с кислотными оксидами
  • Взаимодействие с кислотами (реакция нейтрализации)
  • Взаимодействие щелочей с растворами солей
  • Отношение оснований к нагреванию
  • Понятие об амфотерных гидроксидах
  • Получение оснований
  • Классификация, номенклатура и получение оснований
      Получение растворимых в воде оснований
  • Получение нерастворимых в воде оснований
  • Получение в промышленности
  • Физические и химические свойства оснований
  • Основания, как и оксиды, кислоты и соли, относятся к сложным неорганическим веществам. Выясним, из каких частей состоит формула любого основания, воспользовавшись таким рядом формул:

    Разделим формулы черточкой на две части, отделив символ металлического элемента от остальных символов, и напишем над металлом его валентность:

    Общим для всех формул является наличие группы атомов которая имеет название гидроксильная группа. В первой формуле она записана без скобок, а в остальных формулах заключена в скобки, после которых стоит соответствующий индекс.

    Как вы уже знаете, понятие валентности распространяется на группы атомов, в частности на кислотные остатки. Имеет свою валентность и гидроксильная группа Она одновалентна. Обратите внимание на валентность металла в приведенных формулах, и станет понятно, что наличие индексов связано с валентностью металла. Действительно, одновалентный калий соединен с одной гидроксильной группой, двухвалентные кальций и барий — с двумя, а трехвалентный алюминий — с тремя. Поэтому, чтобы соблюдать правило относительно одинаковой суммы единиц валентностей обеих частей формулы сложного вещества, и ставят соответствующие индексы.

    Теперь можем сформулировать определение оснований:

    Основания — это сложные вещества, образованные металлическим элементом и гидроксильными группами.

    Запишем формулу оснований в общем виде:

    Следует отметить, что основания, как и соли,— вещества не молекулярного, а ионного строения, поэтому их формулы отображают соотношения ионов металла и ионов гидроксильной группы в веществе.

    Что такое кислота?

    Кислоты представляют собой молекулы, которые при растворении в воде высвобождают ион водорода. Ионы — это положительно и отрицательно заряженные частички, которые придают кислотам их свойства.


    Молекула соляной кислоты

    Давай рассмотрим этот процесс на примере соляной кислоты — HCI. Если соляную кислоту соединить с водой, она распадется на ион водорода (Н+) и ион хлора (CI ). Так как в составе молекулы воды также есть водород, то при распаде соляной кислоты общее количество ионов водорода в растворе увеличится.

    А что происходит со щелочами при попадании в воду? В воде щелочи высвобождают гидроксид-ионы. Например, гидроксид натрия (NaOH) — щелочь. При соединении с водой он распадается на ионы натрия (Na+) и гидроксид-ионы (ОН ). Когда гидроксид-ионы встречаются с ионами водорода воды, общее количество ионов водорода в растворе сокращается.

    Общее понятие

    Основания выступают в форме электролитов, в их растворах не содержатся анионы с отрицательным зарядом, исключение составляют гидрид ионы. Основания называются с употреблением слова гидроксид, к которому в родительном падеже добавляется название металла. Например, гидроксид кальция (Cа (ОН) 2). Ориентиром для некоторых оснований являются старые наименования, например, субстанция натрия называется едким натром.

    Гидроксид натрия, едкий натр, каустическая сода, натриевая щелочь — так именуется одна и та же субстанция, которая обозначается общей химической формулой Na OH.

    Гидрат натрия безводный представляет собой кристаллический порошок белого цвета, при растворении его получается прозрачная жидкость, внешне ничем не отличающаяся от воды.

    Если в составе вещества есть гидроксильные группы, которые отсоединяются в виде отдельных атомов при реагировании с другими субстанциями, то такое соединение относится к группе оснований. Множество таких сочетаний содержат гидроксиды с присоединенными к ним атомами различных металлов.

    Список примеров гидроксидов:

    • натрия NaOH;
    • калия КОН;
    • железа Fe (OH)3.

    Гидроксильные группы являются одновалентными, поэтому легко обозначаются формулами в зависимости от способности металлов образовывать различные химические связи.

    При этом к символической записи металла приписывается число групп, которое является эквивалентным валентности вещества. Большая часть основных элементов относится к ионным сочетаниям.

    Основные классификации

    Основания подразделяются по нескольким признакам. В зависимости от степени разведения в водной среде они бывают растворимыми, практически нерастворимыми и другими.

    Примером растворимых субстанций служат гидроксиды лития, натрия, калия, бария, стронция, рубидия и другие соединения. Не растворяются в водной среде при обычных условиях элементы Zn (OH) 2, Al (OH) 3, Mg (OH) 2, Be (OH) 2. К другим видам можно отнести гидрат аммиака NН3Н2О.

    По числу содержания функциональных групп в молекулах гидроксидов:

    • однокислотные (NaOH);
    • двукислотные, например, Cu (OH) 2;
    • трехкислотные Fe (OH)3.

    Выделяют летучие вещества, например, аммиак, метиламин и нелетучие соединения (нерастворимые основания и щелочи) в зависимости от способности субстанции переходить в газообразное состояние. Гидроксиды делятся на стабильные (бария, натрия) и нестабильные группы (гидраты аммония) по способности работать в равновесии без изменения своей структуры. Выделяются категории с содержанием кислорода, например, гидроксиды стронция и калия, а также бескислородные группы (амины, аммиак).

    По типу связей выделяют виды:

    • неорганические соединения с включением нескольких серий ОН, иногда содержится одна функциональная группа;
    • органические основания представляют гидраты, которые принимают в состав протоны в форме амидинов, аминов и иных сочетаний.

    По виду химического реагирования выделяют основные и амфотерные вещества.

    Первые проявляют главные характеристики гидратов, вторые субстанции дополнительно еще и кислотные особенности.

    Подразделение на нерастворимые и растворимые категории почти всегда совпадает с классификацией слабых и сильных оснований.

    Иногда линия аналога проводится между этим делением и разбивкой на металлические гидроксиды и переходные элементы.

    Исключается из классификации литий, гидроксид которого отлично растворяется в водном растворе, но представляет собой слабое основание. Сильные элементы легко избавляются от гидроксильных групп, а слабые удерживают функциональные фракции.

    Подразделение по силе

    Различаются разновидности оснований по степени распада вещества и образования электролитов. Выделяются сильные субстанции (в основном щелочи с показателем a, превышающим 30%) и слабые нерастворимые соединения, у которых индекс a показывает меньше 30%.

    Сила гидроксидов выражается в способности отделять протоны от кислотных элементов.

    Для характеристики используется константа равновесия при реагировании между кислотами и основаниями, при этом вода используется в качестве реактивной среды.

    Увеличение значения константы говорит о прибавлении силы гидроксида, т. е. вещество легко распадается на протоны и другие частицы.

    Примеры оснований в зависимости от значения константы:

    • к сильным субстанциям относится едкий натр, едкий калий, гашеная известь, гидроксид лития и бария;
    • слабые вещества представлены гидроксидами магния, цинка, железа (II и III), аммония, других металлов.

    Гидроксид кальция трудно растворяется, но к сильным основаниям (щелочам) относится та его составляющая, которая легко реагирует с водой. Показатель силы требуется для характеристики при взаимодействии оснований с кислотами, особенно слабого типа. Сильные вещества всегда реагируют с любыми видами кислот, при этом мощность последних может быть различной.

    Примеры уравнений двух видов реакции:

    1. 2 NH 4 OH + H 2 S = (NH 4) 2 S +2 H 2 O — слабое основание и кислота при реагировании дают едва ощутимую реакцию с малым числом продуктов.
    2. 2 Na OH + H 2 S = Na 2 S +2 H 2 O — сильное основное вещество при реакции со слабой кислотой выделяет большее количество компонентов.

    При повышении температуры проявляются типичные реакции оснований, происходит разложение на базовые оксиды и воду. Щелочные растворы окрашивают индикаторы в зависимости от их вида. Фенолфталеин получает малиновый оттенок, лакмус реагирует синим цветом, а метил оранжевый становится желтым.

    Что такое основание?

    Основание — это соединение, химически противоположное кислоте. В состав основания входят ионы металлов и связанные с ними гидроксид-ионы. Эти вещества способны присоединять ионы водорода (Н+) из кислоты. Когда основание смешивается с кислотой, оно полностью нейтрализует его свойства, а в результате реакции образуется соль.

    Например, с точки зрения химии хорошо знакомая тебе зубная паста — это основание, которое нейтрализует кислоту, оставшуюся во рту после приема пищи.

    ЗАПОМНИ! В связи с тем, что ионы существуют только в растворах, свои свойства кислоты проявляют также лишь в растворах.

    Применение

    Физико-химические свойства оснований сделали их незаменимыми веществами во всех отраслях, использующих химические технологии:

    • в добыче полезных ископаемых и металлургии;
    • в производстве потребительских товаров, косметической, пищевой и фармацевтической продукции;
    • в производстве красителей, бытовой химии и удобрений;
    • в топливной и химической промышленности;
    • в строительстве и многих других областях.

    Наиболее широко применяются щелочи, но и нерастворимые основания используются в производстве полимеров, в очистных сооружениях, в медицине, в электротехнике.

    Задания

    1. Какое соединение в ряду KOH, Ra(OH2), BeO, P2O5, HBrO3, Al(OH3) является:

    1. амфотерным оксидом;
    2. едкой щелочью;
    3. кислотным оксидом;
    4. нерастворимым основанием;
    5. гидроксидом щелочноземельного металла?

    2. Какое основание в каждой из пар является более сильным?

    1. Ca(OH)2 или Mg(OH)2;
    2. Ba(OH)2 или Ca(OH)2;
    3. Ra(OH)2 или CsOH;
    4. Sr(OH0)2 или Al(OH)3;
    5. KOH или LiOH.

    3. Какие соединения образуются в результате реакции Zn(OH)2+H2SO4? Напишите ее молекулярное и ионное уравнения.

    4. Какие соединения являются продуктом реакции между гидроксидом натрия и оксидом азота(V)? Напишите уравнения в молекулярной и ионной форме.

    5. Какое основание можно получить, используя реакцию между гидроксидом калия и сульфатом магния? Запишите ее уравнения.

    6. Составьте молекулярные и ионные уравнения реакций, позволяющих осуществить превращения .

    Что такое щелочь?

    Щелочи — это соединения, в состав которых входят ион металла и гидроксид-ион (ОН-). К щелочам химики относят гидроксиды щелочных и щелочноземельных металлов. Щелочи представляют собой вещества белого цвета, которые хорошо растворяются в воде. Более того, растворение всегда сопровождается очень активным выделением тепла. Щелочи вступают в реакцию с кислотами, образуя соль и воду.


    Такая щелочь, как гидроксид натрия, используется для производства твердого мыла

    Щелочи очень активны! Они способны поглощать из воздуха не только водяные пары, но и молекулы углекислого газа, сероводорода и т.д. Поэтому хранят щелочи в очень герметичной таре. Концентрированные щелочи разрушают стекло, а иногда даже фарфор. Если сравнивать щелочи с кислотами, то щелочи могут вызвать более сильные ожоги, так как они очень быстро проникают в ткань, и их практически невозможно смыть водой.


    В кислотном растворе лакмусовая бумажка становится красной, в щелочном — синей

    Определение и основная формула

    Начнем с определения. Щелочью называется хорошо растворимое в воде вещество, гидроксид щелочного (1-ая группа, основная подгруппа в таблице Менделеев) или щелочноземельного (2-ая группа, основная подгруппа в таблице Менделеева) металла. Стоит заметить, что бериллий и магний, хотя и принадлежат к щелочным металлам, щелочей не образуют. Их гидроксиды относят к основаниям.

    Щелочи — самые сильные основания, растворение которых в воде сопровождается тепловыделением. Примером этого служит бурная реакция с водой гидроксида натрия. Из всех щелочей наименее растворим в воде гидроксид кальция (известный также как гашеная известь), который в чистом виде представляет собой порошок белого цвета.

    Из определения можно сделать вывод, что химическая формула щелочи — ROH, где R — щелочноземельный (кальций, стронций, радий, барий) или щелочной (натрий, калий, литий, цезий, франций, рубидий) металл. Приведем некоторые примеры щелочей: NaOH, KOH, CsOH, RbOH.

    Шкала pH

    Почему одни жидкости — кислоты, а другие — щелочи? Оказывается, все дело в типе ионов. Если в жидкости больше концентрация ионов водорода, такая жидкость является кислотой, а если гидроксид-ионов, то щелочью.

    Шкала pH используется для измерения кислотности или щелочности раствора от 0 до 14.

    Если pH раствора находится в пределах 0—7, то такой раствор считается кислотным, при этом раствор с pH = 0 — самый кислый. Растворы с pH в пределах 7—14 являются щелочами, при этом раствор с pH = 14 считается самым едким и опасным.

    Если pH раствора равен 7, то такой раствор является нейтральным, так как концентрация ионов водорода равна концентрации гидроксид-ионов. Пример нейтрального раствора — чистая вода.

    Что такое показатель pH?

    В переводе с латинского pH (potentia hydrogeny) озна­чает «сила водорода», т.е. активность ионов водоро­да в водном растворе.

    Как химики определяют наличие воды в веществе?

    Они берут бесцветный сульфат меди (CuSO4) и добавляют его в вещество. Если воды нет, то по­рошок остается бесцветным, однако даже при минимальном количестве воды он становится синим.

    Концентрированные кислоты и щелочи

    Ядовитые жидкости находятся не только в школьных лабораториях, они и вокруг нас. Это различные средства бытовой химии (стиральные порошки и пятновыводители), цветочные удобрения и ядохимикаты, лаки и краски, клеи и растворители, бензин и дизельное топливо, аккумуляторные, тормозные и прочие технические жидкости, а на кухне — уксус и уксусная кислота.

    Совершенно очевидно, что все вышеупомянутые вещества должны использоваться строго по назначению и в соответствии с определенными правилами, указанными на этикетке каждого средства. К сожалению, несоблюдение мер безопасности при работе с ядовитыми средствами может привести к серьезным проблемам со здоровьем: отравлению, различным повреждениям кожи и слизистых оболочек.

    ВНИМАНИЕ! Обязательно запомни следующую информацию: кислоты с очень низким показателем pH (менее 2) и щелочи, pH которых выше 13, являются чрезвычайно опасными!

    Кислоты и щелочи в природе

    Ты уже успел убедиться в том, что вокруг нас — огромное количество кислот и щелочей. Молочные продукты, овощи и фрукты содержат лимонную, яблочную, щавелевую, уксусную, молочную, аскорбиновую и другие кислоты. Трудно поверить, но в косточках вишен и миндаля содержится (хоть и в минимальных количествах) такой сильный яд, как синильная кислота! Известно, что многие насекомые предпочитают защищаться разными кислотами. Никогда не задумывался, почему укусы обыкновенного крошечного муравья бывают такими болезненными? А все потому, что он вспрыскивает в ранку капельки муравьиной кислоты. Эту же кислоту выделяют и кое-какие виды гусениц, а тропические пауки и некоторые жуки защищаются от врагов при помощи уксусной и серной кислот.

    ОСТОРОЖНО! Как правило, концентрированные кислоты и щелочи есть во всех школьных каби нетаххимии, и пользоваться ими можно только под руководством учителя.

    Щелочные продукты питания

    Различают кислые, щелочные и нейтральные продукты питания. Среди щелочных продуктов можно перечислить зелень, репу, огурцы, хрен, сельдерей, лимоны, свеклу, морковь, капусту, цитрусовые, смородину, виноград, вишню, сухофрукты, картофель, перец, помидоры, чеснок.

    Примечательно, что в составе нейтральных продуктов содержатся и кислоты, и щёлочи. Это растительное, сливочное масло.

    Интересно, что молоко — это щелочной продукт. Но тёплое или кипячёное молоко – кислый продукт.

    Щёлочи активно используются человеком. При этом следует помнить и в обязательном порядке соблюдать правила техники безопасности.

    Кислоты в почве

    Оказывается, кислоты есть и в почвах, а способность почвы проявлять свойства кислот называется кислотностью. Этот показатель зависит от наличия в земле ионов водорода. От кислотности почвы зависят рост и развитие растений. Большинство из них предпочитает нейтральные или близкие к ним почвы. Однако есть ряд растений, которые отлично себя чувствуют именно на кислотных почвах, например рододендроны, гортензии, азалии. Некоторые сорта гортензии могут менять цвет бутонов в зависимости от условий выращивания и кислотности почвы. Ученые выяснили, что на цвет бутонов влияет наличие алюминия!

    Большинство садовых почв характеризуется достаточным содержанием этого элемента. В кислой среде соединения алюминия превращаются в растворимые и становятся доступными для растений, поэтому и вырастают бутоны голубого цвета. В нейтральной или щелочной среде алюминий находится в виде нерастворимых соединений, поэтому он и не поступает в растения. В результате на таких почвах растут бутоны розового цвета.

    Кислоты и щелочи в нашем организме

    Для переваривания пищи организм использует желудочный сок, в состав которого входят соляная кислота и различные ферменты. Иногда, особенно после переедания, мы можем почувствовать боль в желудке. Чаще всего для снятия неприятных ощущений достаточно принять антацидный, или противокислотный, препарат, основное действие которого направлено на нейтрализацию соляной кислоты в желудке. Как правило, все антациды — щелочи, и именно они нейтрализуют повышенную активность кислот.


    Действие антацидных препаратов

    Поделиться ссылкой

    Рейтинг
    ( 2 оценки, среднее 5 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]